A Neural Network Based Facial Expression Analysis using Gabor Wavelets
نویسندگان
چکیده
Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper we present a method to analyze facial expression from images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to classify the facial expressions. As a second stage, the images are preprocessed to enhance the edge details and non uniform down sampling is done to reduce the computational complexity and processing time. Our method reliably works even with faces, which carry heavy expressions. Keywords— Face Expression, Radial Basis Function, Gabor Wavelet Transform, Human Computer Interaction.
منابع مشابه
Facial Expression Recognition Using Sparse Representation
Facial expression recognition is an interesting and challenging subject in signal processing and artificial intelligence. In this paper, a new method of facial expression recognition based on the sparse representation classifier (SRC) is presented. Two typical appearance facial features, i.e., local binary patterns (LBP) and Gabor wavelets representations are extracted to evaluate the performan...
متن کاملFace Detection using Gabor Wavelets and Neural Networks
This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity me...
متن کاملDehghani Face Detection using Gabor Wavelets and Neural Networks
This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity me...
متن کاملFacial Expression Recognition using Gabor Wavelet
Facial expression recognition (FER) has good applications in different aspects of day-to-day life. But not yet realized due to unavailability of effective expression recognition techniques. This paper discusses the application of Gabor filter based feature extraction by using feed-forward neural networks (classifier) for recognition of four different facial expressions from still pictures of th...
متن کاملOccluded Face Recognition by Using Gabor Features
A new approach to feature based frontal face recognition with Gabor wavelets is presented in this paper. The feature points are automatically extracted using the local characteristics of each individual face in order to decrease the effect of occluded features. There is no training as in neural network approaches, thus single frontal face for each individual is enough as reference. Experiment...
متن کامل